Multipredicate Join Algorithms for Accelerating Relational Graph Processing on GPUs
نویسندگان
چکیده
Recent work has demonstrated that the use of programmable GPUs can be advantageous during relational query processing on analytical workloads. In this paper, we take a closer look at graph problems such as finding all triangles and all four-cliques of a graph. In particular, we present two different join algorithms for the GPU. The first is an implementation of Leapfrog-Triejoin (LFTJ), a recently presented worst-case optimal multi-predicate join algorithm. The second is a novel approach, inspired by the former but more suitable for GPU architectures. Our preliminary performance benchmarks show that for both approaches using GPUs is cost-effective. (the GPU implementation outperforms respective CPU variants). While the second algorithm is faster overall, it comes with increased implementation complexity and storage requirements for intermediary results. Furthermore, both our algorithms are competitive with the hand-written C++ implementation for finding triangles and four-cliques in the graph-processing system GraphLab executing on a multi-core CPU.
منابع مشابه
Challenges for a GPU-Accelerated Dynamic Programming Approach for Join-Order Optimization
Relational database management systems apply query optimization in order to determine efficient execution plans for declarative queries. Since the execution time of equivalent query execution plans can differ by several orders of magnitude based on the used join order, join-order optimization is one of the most important problems within query processing. Since the time-budget of query optimizat...
متن کاملGPU-accelerated join-order optimization
Join-order optimization is an important task during query processing in DBMSs. The execution time of different join orders can vary by several orders of magnitude. Hence, efficient join orders are essential to ensure the efficiency of query processing. Established techniques for join-order optimization pose a challenge for current hardware architectures, because they are mainly sequential algor...
متن کاملInvestigating the Effects of Hardware Parameters on Power Consumptions in SPMV Algorithms on Graphics Processing Units (GPUs)
Although Sparse matrix-vector multiplication (SPMVs) algorithms are simple, they include important parts of Linear Algebra algorithms in Mathematics and Physics areas. As these algorithms can be run in parallel, Graphics Processing Units (GPUs) has been considered as one of the best candidates to run these algorithms. In the recent years, power consumption has been considered as one of the metr...
متن کاملAccelerating Dynamic Graph Analytics on GPUs
As graph analytics often involves compute-intensive operations, GPUs have been extensively used to accelerate the processing. However, in many applications such as social networks, cyber security, and fraud detection, their representative graphs evolve frequently and one has to perform a rebuild of the graph structure on GPUs to incorporate the updates. Hence, rebuilding the graphs becomes the ...
متن کاملA virtual machine model for accelerating relational database joins using a general purpose GPU
We demonstrate a speedup for database joins using a general purpose graphics processing unit (GPGPU). The technique is novel in that it operates on an SQL virtual machine model developed using CUDA. The implementation compiles an SQL statement to instructions of the virtual machine that are then executed in parallel on the GPU. We use the threedimensional structure of the CUDA grid and thread m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014